
DOI 10.1007/s10898-005-3834-4
Journal of Global Optimization (2006) 35: 163–195 © Springer 2006

Piecewise Partially Separable Functions
and a Derivative-free Algorithm for Large
Scale Nonsmooth Optimization

ADIL M. BAGIROV and JULIEN UGON
Centre for Informatics and Applied Optimization, School of Information Technology and
Mathematical Sciences, University of Ballarat, Victoria 3353, Australia
(e-mail: a.bagirov@ballarat.edu.au)

(Accepted 6 October 2005)

Abstract. This paper introduces the notion of piecewise partially separable functions and
studies their properties. We also consider some of many applications of these functions.
Finally, we consider the problem of minimizing of piecewise partially separable functions
and develop an algorithm for its solution. This algorithm exploits the structure of such func-
tions. We present the results of preliminary numerical experiments.

Mathematics Subject Classifications. 65K05, 90C25

Key words: discrete gradient, large scale optimization, nonsmooth optimization, piecewise
partially separable functions, subdifferential

1. Introduction

Some important practical problems can be reduced to nonsmooth optimi-
zation problems which contain hundreds or thousands of variables. The
cluster analysis problem and the problem of calculation of piecewise linear
function separating two sets are such problems (see, [6–10, 18, 21]).

Currently available general-purpose nonsmooth optimization methods
are not efficient to solve such problems. To our best knowledge the paper
[17] presents the first algorithm for dealing with large scale nonsmooth
optimization problems. In this paper variable metric bundle algorithm with
limited memory has been developed.

Large-scale optimization problems, as a rule, have a special structure.
This structure is exploited to design efficient algorithms. Last two decades
different algorithms have been developed for solving large scale optimiza-
tion problems where both objective and constraint functions are twice con-
tinuously differentiable (see, for example, [12, 13, 16]). These algorithms
strongly rely on the structure of large scale optimization problems, specifi-
cally the sparsity of Hessians of the objective and constraint functions.

164 A.M. BAGIROV AND J. UGON

In this paper we study large scale nonsmooth optimization problems.
We introduce a class of piecewise partially separable functions and develop
an algorithm for their minimization. This algorithm is based on the so-
called discrete gradient method (see [4, 5]). We present preliminary results
of numerical experiments which demonstrate that the proposed algorithm
is efficient for minimization of piecewise partially separable functions with
several thousand variables.

The paper has the following structure. In Section 2 we introduce the new
class of nonsmooth functions. Section 3 presents some properties of piece-
wise partially separable functions. We describe some of many applications
of these functions in Section 4. We discuss an algorithm for minimizing of
one subclass of piecewise partially separable functions in Section 5. Section
6 presents the results of preliminary numerical experiments and Section 7
concludes the paper.

2. Piecewise Partially Separable Functions: Definition and Examples

Let f be a scalar function defined on an open set D0 ⊆ IRn containing a
closed set D⊆ IRn. Here IRn is an n-dimensional Euclidean space.

DEFINITION 1. The function f is called partially separable if there exists
a family of n×n diagonal matrices Ui, i=1, . . . ,M such that the function
f can be represented as follows:

f (x)=
M∑

i=1

fi(Uix).

Without loss of generality we assume that the matrices Ui are binary, that
is they contain only 0 and 1. It is also assumed that the number mi of
nonzero elements in the diagonal of the matrix Ui is much smaller than n.

In other terms, the function f is called partially separable if it can be
represented as the sum of functions of a much smaller number of variables.
If M=n and diag(Ui)= ei where ei is the i-th orth vector, then the func-
tion f is separable.

Remark 1. Any function f can be considered as partially separable if we
take M=1 and U1 =I , where I is the identity matrix. However, we consider
situations where M>1 and mi �n, i=1, . . . ,M.

EXAMPLE 1. Consider the following function

f (x)=
n∑

i=1

min{|xi |, |x1|}.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 165

This function is partially separable. Indeed, in this case M = n,mi = 2,
U 11
i = 1,Uii

i = 1, all other elements of Ui are zeros for all i= 1, . . . , n and
fi(Uix)=min{|xi |, |x1|}.

DEFINITION 2. The function f is said to be piecewise partially separable
if there exists a finite family of closed sets D1, . . . ,Dm such that ∪mi=1Di=D
and the function f is partially separable on each set Di, i=1, . . . ,m.

EXAMPLE 2. All partially separable functions are piecewise partially sep-
arable.

EXAMPLE 3. Consider the following function

f (x)= max
j=1,... ,n

n∑

i=1

|xi −xj |.

The function f is piecewise partially separable. It is clear that the functions

ϕj (x)=
n∑

i=1

|xi −xj |, j =1, . . . , n

are partially separable with M = n,mi = 2 and Uii
i = U

jj

i = 1 for all i =
1, . . . , n. In this case the sets Di, i=1, . . . , n are defined as follows:

Di ={x ∈ IRn :ϕi(x)�ϕj (x), j =1, . . . , n, j �= i}.

The piecewise partially separability of the function f follows from the fact
that the maximum of partially separable functions is piecewise partially
separable, which will be proved later on in Proposition 7.

2.1. chained and piecewise chained functions

One of the interesting and important classes of partially separable func-
tions is the one of the so-called chained functions.

DEFINITION 3. The function f is said to be k-chained, k� n, if it can
be represented as follows:

f (x)=
n−k+1∑

i=1

fi(xi, . . . , xi+k−1).

166 A.M. BAGIROV AND J. UGON

For example, if k=2, the function f is:

f (x)=
n−1∑

i=1

fi(xi, xi+1).

PROPOSITION 1. Any k-chained function is partially separable.

Proof. Indeed for k-chained functions M=n−k+1, mi=k and the matri-
ces Ui, i=1, . . . ,M are defined as follows:

U
jj

i =1, j = i, . . . , i+k−1

and all other elements of Ui are zeros.

PROPOSITION 2. Any separable function is 1-chained.

DEFINITION 4. The function f is said to be piecewise k-chained if there
exists a finite family of closed sets D1, . . . ,Dm such that ∪mi=1Di =D and
the function f is k-chained on each set Di, i=1, . . . ,m.

PROPOSITION 3. Any piecewise k-chained function is piecewise partially
separable.
The proof directly follows from Proposition 1.

The following is an example of piecewise 2-chained function.

EXAMPLE 4. (Chained Crescent I function ([24]).

f (x)=max {f1(x), f2(x)} ,

where

f1(x)=
n−1∑

i=1

(
x2
i + (xi+1 −1)2 +xi+1 −1

)
,

f2(x)=
n−1∑

i=1

(−x2
i − (xi+1 −1)2 +xi+1 +1

)
.

Both f1 and f2 are 2-chained functions. We define two sets as follows:

D1 ={x ∈ IRn :f1(x)�f2(x)},
D2 ={x ∈ IRn :f2(x)�f1(x)}.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 167

It is clear that the sets D1, D2 are closed, f (x)= f1(x) for x ∈D1 and
f (x)=f2(x) for x ∈D2. Furthermore D1

⋃
D2 =D. Thus the function f is

piecewise 2-chained.

2.2. piecewise separable functions

DEFINITION 5. The function f is said to be piecewise separable if there
exists a finite family of closed sets D1, . . . ,Dm such that

⋃m
i=1Di =D and

the function f is separable on each set Di, i=1, . . . ,m.

PROPOSITION 4. Any piecewise separable function is piecewise 1-chained.

Proof. Since any separable function is 1-chained (Proposition 2) the proof
is straightforward.

COROLLARY 1. Any piecewise separable function is piecewise partially
separable.

PROPOSITION 5. All separable functions are piecewise separable. In this
case m=1.

EXAMPLE 5. All piecewise linear functions are piecewise separable. A
function f :D→ IR1 is said to be piecewise linear if there exists a finite
family of closed sets Q1, . . . ,Qp such that

⋃p

i=1Qi =D and the function
f is linear on each set Qi, i=1, . . . , p. Since any linear function is separa-
ble the function f is piecewise separable and in this case m=p.

EXAMPLE 6. One of the simplest piecewise separable functions is the fol-
lowing maximum function:

f (x)= max
i=1,... ,n

x2
i .

Here m=n and

Di ={x ∈ IRn :x2
i �x2

j , j =1, . . . , n, j �= i}.

f (x)=x2
i for any x ∈Di . It is clear that

⋃m
i=1Di = IRn. It should be noted

that the function f is neither separable nor piecewise linear.

168 A.M. BAGIROV AND J. UGON

3. Properties of Piecewise Partially Separable Functions

In this section we study some properties of piecewise partially separable
functions.

PROPOSITION 6. Let f1 and f2 be partially separable functions on the
closed D. Then the function f (x)= f1(x)+ f2(x) is also partially separable
on D.

Proof. Since the functions f1 and f2 are partially separable there exist
families of matrices U 1

i , i=1, . . . ,M1 and U 2
j , j =1, . . . ,M2 such that

f1(x)=
M1∑

i=1

f1i(U
1
i x),

f2(x)=
M2∑

j=1

f2j (U
2
j x).

Consider the following sets:

I ={
i ∈{1, . . . ,M1} :U 1

i �=U 2
j , ∀j ∈{1, . . . ,M2}

}
,

J ={
j ∈{1, . . . ,M2} :U 2

j �=U 1
i , ∀i ∈{1, . . . ,M1}

}
,

H ={
(i, j), i ∈{1, . . . ,M1}, j ∈{1, . . . ,M2} :U 1

i =U 2
j

}
.

It is clear that for any i ∈ I there is no j ∈{1, . . . ,M2} such that (i, j)∈H
and similarly for any j ∈ J there is no i ∈ {1, . . . ,M1} such that (i, j)∈H .
Then the function f can be represented as follows

f (x)=
∑

(i,j)∈H
(f1i(U

1
i x)+f2j (U

2
j x))+

∑

i∈I
f1i(U

1
i x)+

∑

j∈J
f2j (U

2
j x).

This function is partially separable, that is

f (x)=
M∑

k=1

f̄k(Vkx),

where M=M1 +M2 −card(H), the matrices Vk, k=1, . . . ,M can be defined
as follows:

Vk =
⎧
⎨

⎩

U 1
i =U 2

j k=1, . . . , card(H) (i, j)∈H,
U 1
i k= card(H)+1, . . . ,M1 i ∈ I,

U 2
j k=M1 +1, . . . ,M1 +M2 − card(H) j ∈J,

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 169

and

f̄k(Vkx)

=
⎧
⎨

⎩

(f1i(U
1
i x)+f2j (U

2
j x)) k=1, . . . , card(H) (i, j)∈H

f1i(U
1
i x) k= card(H)+1, . . . ,M1 i ∈ I

f2j (U
2
j x) k=M1 +1, . . . ,M1 +M2 − card(H) j ∈J.

Here card(H) stands for the cardinality of the set H .

We say that two partially separable functions f1 and f2 have the same
structure if I =J =∅. These functions are more interesting from a practical
point of view. In this case the function f has the same structure as f1 and
f2 and

f (x)=
∑

(i,j)∈H
(f1i(U

1
i x)+f2j (U

2
j x)).

For example, if f1 and f2 are k-chained then the function f is also k-
chained.

PROPOSITION 7. If f and g are piecewise partially separable (piecewise k-
chained, piecewise separable) continuous functions on the closed set D, then

(1) h(x) = αf (x), α ∈ IR1 is piecewise partially separable (piecewise k-
chained, piecewise separable);

(2) h(x)=f (x)+g(x) is piecewise partially separable (piecewise k-chained,
piecewise separable);

(3) h(x)=max(f (x), g(x)), h(x)=min(f (x), g(x)) and h(x)= |f (x)| are
piecewise partially separable (piecewise k-chained, piecewise separable).

Proof.(1) The proof is straightforward.
(2) Since the functions f and g are piecewise partially separable there

exist families of closed sets

D
f

i , i=1, . . . ,m1,

m1⋃

i=1

D
f

i =D

and

D
g

j , j =1, . . . ,m2,

m2⋃

j=1

D
g

j =D

170 A.M. BAGIROV AND J. UGON

such that the function f is partially separable on the sets Df

i and the func-
tion g is partially separable on the sets Dg

j . We define a family of sets
Qij , i=1, . . . ,m1, j =1, . . . ,m2 where

Qij =Df

i ∩Dg

j .

It is clear that
⋃

i,j

Qij =D

and the sets Qij are closed. Since the sum of partially separable functions
is partially separable we get that f + g is partially separable on each set
Qij .

The proof for piecewise k-chained and piecewise separable functions is
similar.

(3) Consider the following two sets:

P1 ={x ∈D :f (x)�g(x)}, P2 ={x ∈D :g(x)�f (x)}.

It is clear that P1 ∪P2 =D. Since the functions f and g are continuous the
sets P1 and P2 are closed. We define the following families of sets:

Q1
i =P1 ∩Df

i , i=1, . . . ,m1, Q2
j =P2 ∩Dg

j , j =1, . . . ,m2.

These sets are closed. It can be easily shown that

(
m1⋃

i

Q1
i

)
∪
⎛

⎝
m2⋃

j

Q2
j

⎞

⎠=D.

h(x)=f (x), x∈Q1
i , i=1, . . . ,m1 and f is partially separable on each set Q1

i .
Similarly h(x)= g(x), x ∈Q2

j , j = 1, . . . ,m2 and g is partially separable on
each set Q2

j . Then we get that the function h is piecewise partially separable.
Since h(x)= min(f (x), g(x))= −max(−f (x),−g(x)) then we get that h

is piecewise partially separable. h(x)=|f (x)|=max(f (x),−f (x)) and both
f and −f are piecewise partially separable it follows that the function h is
also piecewise partially separable.

Again the proof for piecewise k-chained and piecewise separable func-
tions is similar.

The problem of computation of Hessians of twice continuously differen-
tiable partially separable functions was discussed by many authors (see, for
example, [1, 12]).

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 171

In order to describe some differential properties of piecewise partially
separable functions we recall some definitions from nonsmooth analysis.

We consider a locally Lipschitz continuous function f defined on IRn.
This function is differentiable almost everywhere and one can define for it
a Clarke subdifferential (see [11]), by

∂f (x)= co
{
v∈ IRn :∃(xk ∈D(f), xk →x, k→+∞) :v= lim

k→+∞
∇f (xk)

}
,

here D(f) denotes the set where f is differentiable and co is a convex hull
of a set.

The function f is differentiable at the point x ∈ IRn with respect to the
direction g∈ IRn if the limit

f ′(x, g)= lim
α→+0

f (x+αg)−f (x)
α

exists. The number f ′(x, g) is said to be the derivative of the function f

with respect to the direction g∈ IRn at the point x.
The Clarke upper derivative f 0(x, g) of the function f at the point x

with respect to the direction g∈ IRn is defined as follows:

f 0(x, g)= lim sup
α→+0,y→x

f (y+αg)−f (y)
α

.

The following is true (see [11])

f 0(x, g)=max{〈v, g〉 :v∈ ∂f (x)}.

Here 〈·, ·〉 stands for an inner product in IRn. It should be noted that the
Clarke upper derivative always exists for locally Lipschitz continuous func-
tions. The function f is said to be regular at the point x ∈ IRn if

f ′(x, g)=f 0(x, g)

for all g∈ IRn. For Clarke regular functions there exists a calculus (see [11,
14]). However in general for nonregular functions such a calculus does not
exist.

Now let us assume that the function f is partially separable and the
functions fi, i=1, . . . ,M are directionally differentiable. Then the function
f is also directionally differentiable and

f ′(x, g)=
M∑

i=1

f ′
i (Uix,Uig). (1)

172 A.M. BAGIROV AND J. UGON

It follows from this formula that if f separable then

f ′(x, g)=
n∑

i=1

f ′
i (xi, gi), (2)

where

f ′
i (xi, gi)=

⎧
⎨

⎩

f ′
i+(xi) if gi >0,

0 if gi =0,
−f ′

i−(xi) if gi <0.

and f ′
i+(xi), f

′
i−(xi) are the right and left side derivatives of the function fi

at the point xi .
Below we study the Lipschitz continuity and directional differentiability

of piecewise partially separable functions.
Let f be a piecewise partially separable function on the closed convex

set D⊂ IRn, that is there exists a family of closed sets Dj, j=1, . . . ,m such
that

⋃m
j=1Dj =D, f (x)= fj (x), x ∈Dj and the functions fj are partially

separable on Dj .

PROPOSITION 8. Let f be continuous and each function fj be locally
Lipschitz continuous on Dj, j=1, . . . ,m. Then the function f is locally Lips-
chitz continuous on D.

Proof. We take any bounded subset D⊂D. Then there exists a subset of
indices {j1, . . . , jp}⊂{1, . . . ,m} such that

coD∩Djk �=∅, k=1, . . . , p.

Let Ljk > 0 be a Lipschitz constant of the function fjk on the set coD ∩
Djk , k=1, . . . , p. Let

L0 = max
k=1,... ,p

Ljk .

Now we take any two points x, y ∈D. Then there exist indices jk1, jk2 ∈
{j1, . . . , jp} such that x∈Djk1

and y∈Djk2
. If k1 =k2 =k then it is clear that

|f (x)−f (y)|= |fk(x)−fk(y)|�Lk‖x−y‖�L0‖x−y‖.

Otherwise we consider the segment [x, y] = αx + (1 − α)y,α ∈ [0,1] joining
these two points and define the following set:

Z[x,y] =
{
z∈ [x, y] :∃l1, l2 ∈{1, . . . , p} : z∈Djl1

∩Djl2

}
.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 173

It is clear that in this case the set Z[x,y] is not empty. Then there exists a
sequence of points {z1, . . . , zN }⊂Z[x,y],N �p such that

• {x, z1}⊂Djk1
, l0 =k1;

• {zN, y}⊂Djk2
, lN =k2;

• ∀i ∈{1, . . . ,N −1},∃li ∈{1, . . . , p} : {zi, zi+1}⊂Djli
.

Then taking into account the continuity of the function f we have:

|f (y)−f (x)| =
∣∣∣∣∣f (y)+

N∑

i=1

(f (zi)−f (zi))−f (x)
∣∣∣∣∣

=
∣∣∣∣∣fjk2 (y)+

N∑

i=1

(fjli−1
(zi)−fjli (zi))−fjk1 (x)

∣∣∣∣∣

� |fjk2 (y)−fjk2 (zN)|+
N−1∑

i=1

|fjli (zi+1)−fjli (zi)|
+|fjk1 (z1)−fjk1 (x)|

� Lj1‖y− zN‖+
N−1∑

i=1

Lji‖zi − zi+1‖+Ljk1 ‖z1 −x‖

� L0(‖y− zN‖+
N−1∑

i=1

‖zi − zi+1‖+‖z1 −x‖).

Then, as all zi are aligned on the segment [x, y], we get

|f (y)−f (x)|�L0‖y−x‖.

Since points x and y are arbitrary it follows that the function f is locally
Lipschitz continuous.

COROLLARY 2. Assume that all conditions of Proposition 8 are satisfied.
Then the function f is Clarke subdifferentiable.

PROPOSITION 9. Assume that for any two points x, y ∈D the set Z[x,y] is
finite and all functions fj , j = 1, . . . ,m are directionally differentiable. Then
the function f is also directionally differentiable.

Proof. We take any point x∈D and any direction g �=0 such that x+αg∈
D,α∈ [0, ᾱ] for some ᾱ >0. By the definition

f ′(x, g)= lim
α→+0

f (x+αg)−f (x)
α

.

174 A.M. BAGIROV AND J. UGON

Assume that x ∈⋂
k∈K Dk, where K⊂{1, . . . ,m}. Let y= x+ ᾱg ∈D. Since

the set Z[x,y] is finite there exists a finite sequence of numbers α1, . . . , αl
such that αi ∈ (0, ᾱ) and x+αjg∈Dkj ∩Dkj+1, j =1, . . . , l and

• [x, x+α1g]⊂Dk1, k1 ∈K;
• [x+αlg, y]⊂Dkl+1 ;
• ∀i ∈{1, . . . , l−1} : [x+αig, x+αi+1g]⊂Dki+1 .

This implies that the segment [x, x+α1g]⊂Dk1 . Thus

f ′(x, g)=f ′
k1
(x, g).

It follows that if the function f is piecewise partially separable then its
directional derivative can be calculated using (1) and if this function is
piecewise separable then its directional derivative is calculated using (2).

In general piecewise partially separable functions are not regular. The
following example demonstrates it.

EXAMPLE 7. Consider the function

f (x1, x2)=max{|x1|− |x2|,−|x1|+ |x2}, (x1, x2)∈ IR2.

This function is piecewise separable. However it is not regular. Indeed, for
the direction g= (1,1) at the point x= (0,1) we have

f ′(x, g)=0 and f 0(x, g)=2,

that is f ′(x, g)<f 0(x, g).

This example shows that in general for the subdifferential of piecewise
partially separable functions a full calculus does not exist. Therefore in
many cases the computation of their subgradients is quite difficult task.

4. Motivation: Examples from Applications

In this section we present two very important applications of piecewise par-
tially separable functions.

4.1. clustering function

Cluster analysis has found many applications, including information retri-
eval, medicine etc. Clustering is also known as the unsupervised classifica-
tion of patterns. The clustering problem has been studied by many authors
and different algorithms have been developed for its solution (see [18, 21]).

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 175

In cluster analysis we assume that we have been given a finite set of
points A in the n-dimensional space IRn, that is

A={a1, . . . , aM}, where ai ∈ IRn, i=1, . . . ,M.

The cluster analysis deals with the problems of organization of a collection
of patterns ai into clusters based on similarity. As a measure of similar-
ity different distances can be used. Here for the sake of simplicity we con-
sider Euclidean distance. We consider partition clustering, that is the distri-
bution of the points of the set A into a given number q of disjoint subsets
Ai, i=1, . . . , q with respect to predefined criteria such that:

(1) Ai �=∅, i=1, . . . , q;
(2) Ai ∩Aj =∅, i, j =1, . . . , q, i �= j ;
(3) A=∪qi=1A

i.

The sets Ai, i=1, . . . , q are called clusters. We can assume that each clus-
ter Ai, i = 1, . . . , q can be identified by its center (or centroid). Then the
clustering problem can be reduced to the following nonsmooth optimiza-
tion problem (see [6]):

minimize f (x1, . . . , xq) subject to (x1, . . . , xq)∈ IRn×q, (3)

where

f (x1, . . . , xq)= 1
M

M∑

i=1

min
s=1,... ,q

‖xs −ai‖2. (4)

xi is the center of the cluster Ai, i=1, . . . , q. If q >1, the function (4) is
nonconvex and nonsmooth. The problem (3) is also known as the sum-of-
squares clustering problem.

It is clear that the function

ψ(y)=‖y−a‖2, y ∈ IRn

is separable and therefore the function

ϕi(x)= min
s=1,... ,q

‖xs −ai‖2

is piecewise separable. Then it follows from Proposition 7 that the function
(4) is piecewise separable.

176 A.M. BAGIROV AND J. UGON

4.2. max–min separability

The problems of supervised data classification arise in many areas includ-
ing management science, medicine, chemistry. The aim of supervised data
classification is to establish rules for the classification of some observa-
tions assuming that the classes of data are known. To find these rules,
known training subsets of the given classes are used. This problem can be
reduced to a number of set separation problems. For each class, the train-
ing points belonging to this class have to be separated from the other train-
ing points using a certain, not necessarily linear, function. In the paper [8]
an algorithm for calculation of piecewise linear functions separating two
sets is developed. This problem is formulated as a nonsmooth optimization
problem with max–min-type objective function. We will briefly describe this
problem.

Let A and B be given disjoint sets containing m and p n-dimensional
vectors, respectively:

A={a1, . . . , am}, ai ∈ IRn, i=1, . . . ,m,

B={b1, . . . , bp}, bj ∈ IRn, j =1, . . . , A∩B=∅.

Let H ={h1, . . . , hl}, where hj ={xj , yj }, j =1, . . . , l with xj ∈ IRn, yj ∈ IR1,
be a finite set of hyperplanes. Let J ={1 . . . , l}. Consider any partition of
this set J r ={J1, . . . , Jr} such that

Jk �=∅, k=1, . . . , r, Jk ∩Jj =∅, ∪rk=1Jk =J.

Let I = {1, . . . , r}. A particular partition J r = {J1, . . . , Jr} of the set J
defines the following max–min-type function:

ϕ(z)=max
i∈I

min
j∈Ji

{〈xj , z〉−yj
}
, z∈ IRn. (5)

DEFINITION 6. (see [8]). The sets A and B are max–min separable if
there exist a finite number of hyperplanes {xj , yj } with xj ∈ IRn, yj ∈ IR1, j ∈
J ={1, . . . , l} and a partition J r ={J1, . . . , Jr} of the set J such that

(1) for all i ∈ I and a∈A

min
j∈Ji

{〈xj , a〉−yj
}
<0;

(2) for any b∈B there exists at least one i ∈ I such that

min
j∈Ji

{〈xj , b〉−yj
}
>0.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 177

Remark 2. It follows from Definition 6 that if the sets A and B are max–
min separable then ϕ(a)<0 for any a∈A and ϕ(b)>0 for any b∈B, where
the function ϕ is defined by (5). Thus the sets A and B can be separated
by a function represented as a max–min of linear functions. Therefore this
kind of separability is called a max–min separability.

The problem of the max–min separability is reduced to the following math-
ematical programming problem (see [8]):

minimize f (x, y) subject to (x, y)∈ IRln× IRl , (6)

where the objective function f has the following form:

f (x, y)=f1(x, y)+f2(x, y)

and

f1(x, y)= 1
m

m∑

k=1

max
[

0,max
i∈I

min
j∈Ji

{〈xj , ak〉−yj +1
}]
, (7)

f2(x, y)= 1
p

p∑

t=1

max
[

0,min
i∈I

max
j∈Ji

{−〈xj , bt〉+yj +1
}]
. (8)

One can see that both functions f1 and f2 are piecewise linear, there-
fore the resulting function f is piecewise linear and consequently piecewise
separable.

5. Minimization of Piecewise Partially Separable Functions

In this section we will develop an algorithm for minimizing one class of
piecewise partially separable functions.

We will consider the following unconstrained minimization problem

minimize f (x) subject to x ∈ IRn, (9)

where the objective function f is as follows

f (x)=
M∑

i=1

max
j∈Ji

min
k∈Kj

fijk(x) (10)

178 A.M. BAGIROV AND J. UGON

and functions fijk, i=1, . . . ,M, j ∈Ji, k∈Kj are partially separable, that is
there exists a family of n×n matrices Uijkt , t=1, . . . ,Mijk such that

fijk(x)=
Mijk∑

t=1

f tijk(Uijktx).

The function f is piecewise partially separable. If all functions fijk are
l-chained (separable) then the function f is piecewise l-chained (piecewise
separable).

Particular cases of this function are the following:

1. The case when the sets Ji, i=1, . . . ,M are singletons

f (x)=
M∑

i=1

min
k∈Ki

fik(x). (11)

The clustering function serves as an example for this type of func-
tions when Ki = {1, . . . ,K},∀i ∈ {1, . . . ,M} and the functions fik are
separable.

2. The case when M=1

f (x)=max
j∈J

min
k∈Kj

fjk(x). (12)

As we can see from Example 7 even for very simple cases this type of
functions may not be regular and therefore sometimes the computation of
their subgradients is quite difficult. Therefore, methods based on function
evaluations only seem better alternatives to solve problem (9). However
the existing direct search methods, including Powell method (see [27]) and
Nelder–Mead simplex method [26], become inefficient when the number of
variables increases.

We will develop a new modified version of the discrete gradient method
for solving problem (9). This is a derivative-free method. The description
of this method can be found in [3, 5] (see, also, [4]). The discrete gradi-
ent method can be considered as a version of the bundle method ([19, 20,
24]), where subgradients of the objective function are replaced by its dis-
crete gradients. This method consists of three main steps: the calculation
of discrete gradients, the calculation of descent directions and line search.
Numerical experiments have shown that for large scale problems the first
step takes most of the CPU time used by the method. We will introduce a
new scheme for the calculation of discrete gradients of piecewise partially
separable functions represented as a sum of max–min functions. To cal-
culate the discrete gradients we use only values of the objective function.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 179

Since the calculation of the objective function in the problem (9) can be
expensive, such a scheme will allow one to significantly reduce the number
of objective function evaluations.

In order to describe a new scheme for the calculation of the discrete gra-
dient we recall here its definition.

5.1. discrete gradient

Let f be a locally Lipschitz continuous function defined on IRn. Let

S1 ={g∈ IRn :‖g‖=1},
G={e∈ IRn : e= (e1, . . . , en), |ej |=1, j =1, . . . , n},
P ={z(λ) : z(λ)∈ IR1, z(λ)>0, λ>0, λ−1z(λ)→0, λ→0},
I (g, α)={i ∈{1, . . . , n} : |gi |�α},

where α∈ (0, n−1/2] is a fixed number.
Here S1 is the unit sphere, G is the set of vertices of the unit hypercube

in IRn and P is the set of univariate positive infinitesimal functions.
We define operators Hj

i : IRn → IRn for i = 1, . . . , n, j = 0, . . . , n by the
formula

H
j

i g=
{
(g1, . . . , gj ,0, . . . ,0) if j < i,
(g1, . . . , gi−1,0, gi+1, . . . , gj ,0, . . . ,0) if j � i. (13)

We can see that

H
j

i g−Hj−1
i g=

{
(0, . . . ,0, gj ,0, . . . ,0) if j =1, . . . , n, j �= i,

0 if j = i. (14)

Let e(β)= (βe1, β
2e2, . . . , β

nen), where β ∈ (0,1]. For x ∈ IRn we consider
vectors

x
j

i ≡xji (g, e, z, λ, β)=x+λg− z(λ)Hj

i e(β), (15)

where g∈S1, e∈G, i ∈ I (g,α), z∈P,λ>0, j =0, . . . , n, j �= i.
It follows from (14) that

x
j−1
i −xji =

{
(0, . . . ,0, z(λ)ej (β),0, . . . ,0) if j =1, . . . , n, j �= i,

0 if j = i. (16)

It is clear that H 0
i g=0 and x0

i (g, e, z, λ, β)=x+λg for all i ∈ I (g,α).

180 A.M. BAGIROV AND J. UGON

DEFINITION 7. (see [2]). The discrete gradient of the function f at the
point x ∈ IRn is the vector �i(x, g, e, z, λ, β)= (�i1, . . . , �in)∈ IRn, g ∈ S1, i ∈
I (g,α), with the following coordinates:

�ij = [z(λ)ej (β)]−1
[
f (x

j−1
i (g, e, z, λ, β))−f (xji (g, e, z, λ, β))

]
,

j =1, . . . , n, j �= i,

�ii = (λgi)−1

⎡

⎣f (xni (g, e, z, λ, β))−f (x)−
n∑

j=1,j �=i
�ij (λgj − z(λ)ej (β))

⎤

⎦ .

A more detailed description of the discrete gradient and examples can be
found in [3].

Remark 3. It follows from Definition 7 that for the calculation of the
discrete gradient �i(x, g, e, z, λ, β), i ∈ I (g,α) we define a sequence of
points

x0
i , . . . , x

i−1
i , xi+1

i , . . . , xni .

For the calculation of the discrete gradient it is sufficient to evaluate the
function f at each point of this sequence.

Remark 4. The discrete gradient is defined with respect to a given direc-
tion g∈S1. We can see that for the calculation of one discrete gradient we
have to calculate (n+ 1) values of the function f : at the point x and at
the points xji (g, e, z, λ, β), j=0, . . . , n, j �= i. For the calculation of the next
discrete gradient at the same point with respect to any other direction g1 ∈
S1 we have to calculate this function n times, because we have already cal-
culated f at the point x.

Remark 5. One can see from (16) that two successive points of the
sequence

x0
i , . . . , x

i−1
i , xi+1

i , . . . , xni

differ by one coordinate only. More precisely, the point xk can be obtained
from the point xk−1 by changing only the k-th coordinate.

5.2. calculation of the discrete gradients of the function (10)

We take any point x ∈ IRn and any direction g∈S1. Remark 3 implies that
for the calculation of the discrete gradient of f at x with respect to the
direction g first we have to define the sequence

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 181

x0
i , . . . , x

i−1
i , xi+1

i , . . . , xni .

It follows from Remark 5 that each new point xp differs from xp−1 by one
coordinate only. In order to calculate the discrete gradient we have to eval-
uate the function f at all of these points.

The functions fijk are partially separable and they can be represented as

fijk(x)=
Mijk∑

t=1

f tijk(Uijktx).

We will call f tijk term functions. The total number of these functions is

N0 =
M∑

i=1

∑

j∈Ji

∑

k∈Kj
Mijk.

For one evaluation of the function f we have to compute these functions
N0 times. Since for one evaluation of the discrete gradient we compute
n+1 times the function f , the total number of computation of term func-
tions for one evaluation of the discrete gradient is

Nt = (n+1)N0.

For p∈{1, . . . , n} we introduce

Qijk
p =

{
t ∈{1, . . . ,Mijk} :Upp

ijkt =1
}
,

Q
ijk

p =
{
t ∈{1, . . . ,Mijk} :Upp

ijkt =0
}
.

It is clear that Mijk = card(Q
ijk
p) + card(Q

ijk

p). One can assume that

card(Q
ijk
p)� card(Q

ijk

p). For example, if all functions fijk are l-chained
then

card(Qijk
p)� l and card(Q

ijk

p)�n− l−1.

If these functions are separable then

card(Qijk
p)=1 and card(Q

ijk

p)=n−1.

Then the function fijk can be calculated at the point xp using the fol-
lowing simplified scheme:

fijk(x
p)=

∑

t∈Qijk
p

f tijk(Uijktx
p)+

∑

t∈Qijk

p

f tijk(Uijktx
p−1) (17)

182 A.M. BAGIROV AND J. UGON

that is we compute only functions f tijk, t ∈Qijk
p at the point xp and all other

functions remain the same as at the point xp−1. Thus in order to calculate
the function f at the point xp we compute

Ns =
M∑

i=1

∑

j∈Ji

∑

k∈Kj
card(Qijk

p)

times the term functions at this point. Since card(Q
ijk
p)�Mijk one can

expect that Ns �N0.
If all functions fijk, i=1, . . . ,M, j ∈Ji, k∈Kj are l-chained then

Ns � l
M∑

i=1

∑

j∈Ji
card(Kj).

If all these functions are separable then

Ns =
M∑

i=1

∑

j∈Ji
card(Kj).

Thus in order to compute one discrete gradient at the point x with
respect to the direction g ∈ S1 we have to compute the function f at the
points x and x + λg using formula (10) and at all other points xpi , p =
1, . . . , n,p �= i it can be computed using simplified scheme (17). In this case
the total number of computation of term functions is

Nts =2N0 + (n−1)Ns

which is significantly less than Nt when n is large.
Now we consider one special case of functions (10).

5.2.1. Functions Represented as a Sum of Minimum functions

We consider the following functions:

f (x)=
M∑

i=1

min
k∈K̄

fik(x
k), (18)

where K̄ = {1, . . . ,K}, xk ∈ IRn, x = (x1, . . . , xK) ∈ IRK×n and the functions
fik are separable

fik(x)=
n∑

j=1

fijk(x
k
j).

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 183

The function (18) can be derived from the function (10) when

Ji ={1}, i=1, . . . ,M, Kj ={1, . . . ,K}.

In order to calculate one discrete gradient of the function (18) we have
to evaluate MK(n+ 1) times the functions fijk. However the use of the
simplified scheme reduces this number to 2MK+n−1.

One of the special cases of functions (18) is the cluster function (4). This
function can be rewritten as follows

f (x)=
M∑

i=1

min
k=1,... ,K

‖xk −ai‖2, x= (x1, . . . , xK)∈ IRK×n.

Here

fik(x
k)=‖xk −ai‖2 and fijk(x

k
j)= (xkj −aij)2.

For the computation of one discrete gradient without using simplified
scheme we have to compute MK(n+1) the very simple functions fijk, how-
ever the use of the simplified scheme allows one to reduce this number to
2MK + n− 1. Since in the cluster analysis the number M is large we can
assume that MK�n and therefore

MK(n+1)
2MK+n−1

≈ n+1
2

.

If n is large then we can significantly reduce computational efforts using
the simplified scheme.

5.2.2. Discrete Gradient Method

In this subsection we briefly describe the discrete gradient method. A more
detailed description of this method can be found in [3, 5].

We consider the following unconstrained minimization problem:

minimize f (x) subject to x ∈ IRn, (19)

where the function f is assumed to be semismooth. An important step in
the discrete gradient method is the calculation of a descent direction of the
objective function f .

Let z∈P,λ>0, β ∈ (0,1], the number c∈ (0,1) and a small enough num-
ber δ>0 be given.

184 A.M. BAGIROV AND J. UGON

ALGORITHM 1. An algorithm for the computation of the descent direc-
tion.
Step 1. Choose any g1 ∈S1, e∈G, i ∈ I (g1, α) and compute a discrete gradi-
ent v1 =�i(x, g1, e, z, λ, β). Set D1(x)={v1} and k=1.
Step 2. Calculate the vector ‖wk‖2 =min{‖w‖2 :w∈Dk(x)}. If

‖wk‖� δ, (20)

then stop. Otherwise go to Step 3.
Step 3. Calculate the search direction by gk+1 =−‖wk‖−1wk.
Step 4. If

f (x+λgk+1)−f (x)�−cλ‖wk‖, (21)

then stop. Otherwise go to Step 5.
Step 5. Calculate a discrete gradient

vk+1 =�i(x, gk+1, e, z, λ, β), i ∈ I (gk+1, α),

construct the set Dk+1(x) = co {Dk(x) ∪ {vk+1}}, set k = k + 1 and go to
Step 2.

EXPLANATIONS TO ALGORITHM 1. In Step 1 we calculate the first
discrete gradient. The distance between the convex hull of all calculated
discrete gradients and the origin is calculated in Step 2. If this distance is
less than the tolerance δ>0 then we accept the point x as an approximate
stationary point (Step 2), otherwise we calculate another search direction
in Step 3. In Step 4 we check whether this direction is a descent direction.
If it is we stop and the descent direction has been calculated, otherwise we
calculate another discrete gradient with respect to this direction in Step 5
and add it to the set Dk.

It is proved that Algorithm 1 is terminating (see [3, 5]).
Let numbers c1 ∈ (0,1), c2 ∈ (0, c1] be given.

ALGORITHM 2. Discrete gradient method
Step 1. Choose any starting point x0 ∈ IRn and set k=0.
Step 2. Set s=0 and xks =xk.
Step 3. Apply Algorithm 1 for the calculation of the descent direction at
x= xks , δ= δk, z= zk, λ=λk, β=βk, c= c1. This algorithm terminates after a
finite number of iterations m>0. As a result we get the set Dm(x

k
s) and an

element vks such that

‖vks ‖2 =min{‖v‖2 :v∈Dm(x
k
s)}.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 185

Furthermore either ‖vks ‖� δk or for the search direction gks =−‖vks ‖−1vks

f (xks +λkgks)−f (xks)�−c1λk‖vks ‖. (22)

Step 4. If

‖vks ‖� δk (23)

then set xk+1 =xks , k=k+1 and go to Step 2. Otherwise go to Step 5.
Step 5. Construct the following iteration xks+1 = xks + σsg

k
s , where σs is

defined as follows

σs =argmax {σ �0 :f (xks +σgks)−f (xks)�−c2σ‖vks ‖}.
Step 6. Set s= s+1 and go to Step 3.

The convergence of the discrete gradient method is studied in [3, 5].

6. Results of Numerical Experiments

A number of numerical experiments have been carried out using large scale
nonsmooth optimization problems.

6.1. test problems

The following test problems have been used in numerical experiments. The
description of chained functions can be also found in [17, 22, 23]. We con-
sider unconstrained minimization problems. Below f∗ stands for the mini-
mum value of a function f .

6.1.1. Piecewise Chained Problems

Problem 1. Chained LQ function

f (x)=
n−1∑

i=1

max
{−xi −xi+1,−xi −xi+1 + (x2

i +x2
i+1 −1)

}
,

f∗ =−(n−1)
√

2.

Problem 2. Chained CB3 I function

f (x)=
n−1∑

i=1

max
{
x4
i +x2

i+1, (2−xi)2 + (2−xi+1)
2,2e−xi+xi+1

}
,

f∗ =2(n−1).

186 A.M. BAGIROV AND J. UGON

Problem 3. Chained CB3 II function

f (x)=max

{
n−1∑

i=1

(x4
i +x2

i+1),

n−1∑

i=1

((2−xi)2 + (2−xi+1)
2),2

n−1∑

i=1

e−xi+xi+1

}
,

f∗ =2(n−1).

Problem 4. Nonsmooth generalization of Brown function 2

f (x)=
n−1∑

i=1

(
|xi |x2

i+1+1 +|xi+1|x2
i +1

)
,

f∗ =0.

Problem 5. Chained Mifflin 2 function

f (x)=
n−1∑

i=1

(−xi +2(x2
i −x2

i+1 −1)+1.75|x2
i +x2

i+1 −1|) ,

f∗ varies.

Problem 6. Chained Crescent I function

f (x)=max

{
n−1∑

i=1

(
x2
i + (xi+1 −1)2 +xi+1 −1

)
,

n−1∑

i=1

(−x2
i − (xi+1 −1)2 +xi+1 +1

)
}
,

f∗ =0.

Problem 7. Chained Crescent II function

f (x)=
n−1∑

i=1

max
{
x2
i + (xi+1 −1)2 +xi+1 −1,−x2

i − (xi+1 −1)2 +xi+1 +1
}
,

f∗ =0.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 187

Problem 8. Chained Wood function

f (x)=
k∑

j=1

[100(x2
2j−1 −x2j)

2 + (x2j−1 −1)2 +90(x2
2j+1 −x2j+2)

2 + (x2j+1 −1)2

+10(x2j +x2j+1 −2)2 + (x2j −x2j+2)
2/10], k= (n−2)/2, f∗ =0.

Problem 9. Chained Powell singular function

f (x)=
k∑

j=1

[
(x2j−1 +10x2j)

2 +5(x2j+1 −x2j+2)
2 + (x2j −2x2j+1)

4

+10(x2j−1 −x2j+2)
4] , k= (n−2)/2, f∗ =0.

6.1.2. Piecewise Partially Separable Problems

Problem 10. PPSF CB3 I function

f (x)=
n∑

i=1

max
{
x4
i +x2

1 , (2−xi)2 + (2−x1)
2,2e−xi+x1

}
, f∗ =2n.

Problem 11. PPSF CB3 II function

f (x)=max

{
n∑

i=1

(x4
i +x2

1),

n∑

i=1

((2−xi)2 + (2−x1)
2),2

n∑

i=1

(e−xi+x1)

}
,

f∗ =2n.

Problem 12. PPSF Nonsmooth generalization of Brown function 2

f (x)=
n∑

i=1

(
|xi |x2

1+1 +|x1|x2
i +1

)
, f∗ =0.

188 A.M. BAGIROV AND J. UGON

Problem 13. PPSF Broyden function

f (x)=
n∑

i=1

|(3−2xi)xi −x1 −x2 +1|7/3 , f∗ =0.

It should be noted that Problems 8, 9 have smooth objective functions.
The objective functions in Problems 10–13 are piecewise partially separable
and they are modification of corresponding test functions from [22].

The code has been written in C++ and numerical experiments have been
carried out on a PC Intel Pentium 4, 1.6 MHz. Their results are presented
in Tables 1–3. In these tables we use the following notations:

• n is the number of variables;
• t the CPU time in seconds;
• Nf the number of evaluations of term functions when the simplified

scheme is applied;
• NS the number of objective function evaluations when the simplified

scheme is applied;
• Ng the number of objective function evaluations without application

of the simplified scheme;
• x0 and x∗ are the initial point and the minimizer, respectively.
We consider that starting from the point x0 the algorithm succeeds if for

the final point x̄ the inequality

f (x̄)−f∗
|f∗|+1

<ε

is true. Otherwise we say that it fails. Here the tolerance ε=10−4.
In the numerical experiments for each problem and n we ran the algo-

rithm starting from 100 randomly chosen points. In the tables we present
average values of t,Nf ,NS and Ng/NS . In the column “Failed" we present
the number of failures of the algorithm. We also present the minimum and
maximum values of the difference f (x0)− f (x∗) in order to demonstrate
how far the initial points are from the solution.

Figures 1 and 3 show the dependence of NS on the number of variables
n for piecewise chained and piecewise partially separable functions, respec-
tively. Figures 2 and 4 show the dependence of Ng/NS on the number of
variables n for these functions.

As one can see from Tables 1–3 the proposed algorithm allows us to solve
all problems with a given accuracy except Problem 4 (with n=2000), Problem
6 (with n=1000,2000), Problem 7 (with n=100–2000) and Problem 13 (with
n= 800,1000,1500,2000). However, it should be noted that all problems,
except Problem 7, have been solved with rougher accuracy. In the numerical

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 189

Table 1. Results for piecewise chained functions

f (x0)−f (x∗)

n t Nf NS Ng/NS Failed Min Max

Chained LQ 2000 44.30 3.23e7 1.62e4 1800.0 0 1.27e05 1.43e05
1500 23.60 1.84e7 1.23e4 1310.0 0 9.34e04 1.07e05
1000 11.40 9.28e6 9.29e3 859.0 0 6.32e04 7.27e04

800 8.31 6.66e6 8.34e3 686.0 0 4.84e04 5.80e04
500 5.18 4.10e6 8.21e3 416.0 0 2.99e04 3.76e04
300 3.26 2.38e6 7.95e3 244.0 0 1.79e04 2.22e04
100 1.76 7.58e5 7.66e3 79.0 0 5.24e03 8.65e03

50 1.31 3.02e5 6.17e3 39.9 0 2.33e03 4.47e03
10 0.34 1.10e4 1.22e3 5.6 0 2.54e02 1.00e03

Chained CB3 I 2000 81.20 3.26e7 1.63e4 1380.0 0 2.73e09 7.80e09
1500 49.00 2.13e7 1.42e4 963.0 0 1.86e09 6.71e09
1000 25.60 1.14e7 1.14e4 633.0 0 9.85e08 4.39e09

800 18.70 8.29e6 1.04e4 511.0 0 2.28e08 4.23e09
500 9.25 4.20e6 8.42e3 309.0 0 3.29e08 3.13e09
300 3.56 1.81e6 6.04e3 163.0 0 1.17e08 2.26e09
100 0.75 3.93e5 3.97e3 49.2 0 2.95e06 9.50e08

50 0.37 1.69e5 3.46e3 24.6 0 9.48e04 6.97e08
10 0.03 1.44e4 1.60e3 3.0 0 3.96e03 3.55e08

Chained CB3II 2000 40.20 2.07e7 1.03e4 1250.0 0 2.92e09 7.65e09
1500 18.2 1.06e7 7.04e3 806.0 0 2.01e09 5.76e09
1000 8.22 5.19e6 5.19e3 488.0 0 9.61e08 4.42e09

800 5.72 3.62e6 4.53e3 385.0 0 7.16e08 3.84e09
500 2.93 1.87e6 3.76e3 243.0 0 3.73e08 2.99e09
300 1.50 9.44e5 3.16e3 150.0 0 5.76e07 2.39e09
100 0.50 2.37e5 2.39e3 54.0 0 1.05e07 1.40e09

50 0.29 9.83e4 2.01e3 26.2 0 1.19e05 1.06e09
10 0.02 1.03e4 1.15e3 3.9 0 4.38e03 2.42e08

Chained generalized Brown 2 2000 76.60 1.79e7 8.94e3 1850.0 5 8.86e02 9.37e02
1500 32.30 7.76e6 5.18e3 1360.0 0 6.56e02 7.09e02
1000 15.30 3.83e6 3.84e3 874.0 0 4.35e02 4.77e02

800 9.75 2.50e6 3.12e3 689.0 0 3.49e02 3.77e02
500 4.91 1.15e6 2.30e3 425.0 0 2.14e02 2.42e02
300 3.24 5.78e5 1.93e3 250.0 0 1.28e02 1.45e02
100 1.57 1.38e5 1.39e3 82.1 0 4.02e01 4.99e01

50 2.48 5.56e4 1.14e3 40.3 0 1.86e01 2.64e01
10 0.03 4.53e3 5.03e2 6.6 0 2.39e00 5.87e00

experiments we restricted the maximum number of discrete gradients which
can be calculated at each iteration to 100. In all these problems in order to
calculate solutions with higher accuracy we have to significantly increase this
number. But in this case the CPU time may increase substantially.

Results for CPU time reported in the tables demonstrate that the algo-
rithm is quite fast to find solutions with the given accuracy in problems up
to 2000 variables.

The numbers presented in columns for the minimum and maximum val-
ues of the difference f (x0)− f∗ show that randomly chosen initial points
are not close to the solutions for all experiments. Therefore one can assert

190 A.M. BAGIROV AND J. UGON

Table 2. Results for piecewise chained functions

f (x0)−f (x∗)

n t Nf NS Ng/NS Failed Min Max

Chained Crescent I 2000 10.70 8.84e6 4.42e3 1840.0 5 1.27e05 1.43e05
1500 5.51 4.72e6 3.15e3 1350.0 3 9.48e04 1.09e05
1000 2.45 2.23e6 2.23e3 875.0 0 6.26e04 7.05e04

800 1.71 1.56e6 1.95e3 692.0 0 4.87e04 5.72e04
500 0.99 8.62e5 1.73e3 428.0 0 2.93e04 3.60e04
300 0.62 4.54e5 1.52e3 256.0 0 1.78e04 2.30e04
100 0.30 1.19e5 1.20e3 82.9 0 5.37e03 8.04e03

50 0.23 5.18e4 1.06e3 40.5 0 2.33e03 4.47e03
10 0.03 5.78e3 6.42e2 6.7 0 2.83e02 9.95e02

Chained Crescent II 2000 25.80 2.15e7 1.08e4 1760.0 100 1.27e05 1.41e05
1500 11.20 1.07e7 7.17e3 1250.0 99 9.40e04 1.06e05
1000 4.45 5.14e6 5.15e3 779.0 100 6.20e04 7.23e04

800 2.83 3.62e6 4.53e3 606.0 98 4.96e04 5.86e04
500 1.30 1.84e6 3.69e3 361.0 99 3.01e04 3.64e04
300 0.70 8.95e5 2.99e3 207.0 97 1.76e04 2.25e04
100 2.48 2.53e5 2.55e3 71.2 61 5.11e03 8.56e03

50 0.50 1.25e5 2.55e3 39.1 0 2.31e03 4.46e03
10 0.26 7.51e3 8.34e2 6.0 0 2.61e02 9.23e02

Chained Mifflin 2000 85.20 7.18e7 3.59e4 1700.0 0 4.69e05 5.16e05
1500 63.50 6.73e7 4.49e4 1140.0 0 3.48e05 3.91e05
1000 22.50 2.83e7 2.83e4 708.0 0 2.29e05 2.68e05

800 14.00 1.83e7 2.29e4 549.0 0 1.84e05 2.11e05
500 6.13 8.08e6 1.62e4 331.0 0 1.13e05 1.33e05
300 3.15 3.73e6 1.25e4 198.0 0 6.61e04 8.37e04
100 1.60 7.97e5 8.05e3 75.0 0 1.76e04 3.10e04

50 1.65 3.37e5 6.88e3 40.0 0 8.59e03 1.81e04
10 0.91 1.39e4 1.54e3 6.0 0 9.15e02 3.84e03

Chained Wood 2000 62.00 4.27e7 2.14e4 1290.0 0 3.31e08 3.86e08
1500 34.20 2.44e7 1.63e4 844.0 0 2.49e08 3.05e08
1000 19.20 1.26e7 1.26e4 466.0 0 1.62e08 1.99e08

800 14.00 8.77e6 1.10e4 345.0 0 1.22e08 1.72e08
500 13.20 4.39e6 8.79e3 201.0 0 7.79e07 1.11e08
300 10.40 2.25e6 7.51e3 117.0 0 4.20e07 6.59e07
100 11.40 6.19e5 6.25e3 40.6 0 1.08e07 2.77e07

50 11.10 2.73e5 5.57e3 22.7 0 4.35e06 1.28e07
10 0.29 2.75e4 3.05e3 3.7 0 5.70e04 3.18e06

Chained Powell singular 2000 24.10 1.53e7 7.64e3 1040.0 0 1.48e08 1.88e08
1500 13.90 9.13e6 6.09e3 658.0 0 1.10e08 1.52e08
1000 8.89 5.29e6 5.30e3 402.0 0 7.19e07 1.01e08

800 13.00 4.13e6 5.17e3 325.0 0 5.08e07 8.58e07
500 6.42 2.52e6 5.04e3 219.0 0 3.36e07 5.68e07
300 5.72 1.67e6 5.58e3 142.0 0 1.78e07 3.67e07
100 5.69 5.40e5 5.45e3 44.4 0 4.33e06 1.36e07

50 5.44 2.24e5 4.58e3 21.6 0 1.26e06 7.62e06
10 0.21 3.79e4 4.22e3 3.3 0 2.49e04 1.77e06

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 191

Table 3. Results for piecewise partially separable functions

f (x0)−f (x∗)

n t Nf NS Ng/NS Failed Min Max

PPSF CB3 I 2000 51.20 3.87e7 1.94e4 854.0 0 3.82e06 8.07e10
1500 27.50 2.19e7 1.46e4 605.0 0 2.80e06 7.70e10
1000 12.90 1.07e7 1.07e4 384.0 0 1.88e06 2.93e10

800 9.26 7.85e6 9.82e3 298.0 0 1.49e06 3.99e10
500 4.93 4.26e6 8.53e3 178.0 0 9.11e05 2.00e10
300 2.71 2.28e6 7.63e3 103.0 0 5.17e05 1.89e10
100 1.57 5.24e5 5.29e3 30.5 0 1.33e05 5.91e09

50 2.26 2.01e5 4.09e3 15.5 0 6.04e04 3.07e09
10 0.04 1.50e4 1.67e3 3.3 0 3.00e03 9.64e07

PPSF CB3 II 2000 24.40 2.12e7 1.06e4 777.0 0 3.74e06 9.08e10
1500 11.70 1.08e7 7.20e3 540.0 0 2.76e06 6.83e10
1000 5.62 5.35e6 5.36e3 341.0 0 1.84e06 2.67e10

800 4.14 3.98e6 4.98e3 261.0 0 1.47e06 3.80e10
500 2.24 2.17e6 4.35e3 163.0 0 9.04e05 2.08e10
300 1.29 1.31e6 4.36e3 97.1 0 5.08e05 1.93e10
100 0.86 9.97e5 1.01e4 29.8 0 1.36e05 3.98e09

50 0.25 1.99e5 4.05e3 15.6 0 7.76e04 2.09e09
10 0.02 1.08e4 1.19e3 3.4 0 3.68e03 4.93e08

PPSF generalized Brown 2 2000 79.60 3.74e7 1.87e4 975.0 3 5.00e02 1.32e03
1500 39.80 1.94e7 1.30e4 724.0 0 4.01e02 9.97e02
1000 16.30 8.22e6 8.23e3 473.0 0 2.47e02 6.59e02

800 10.70 5.38e6 6.74e3 376.0 0 1.97e02 5.27e02
500 5.10 2.40e6 4.81e3 232.0 0 1.24e02 3.23e02
300 3.60 1.24e6 4.13e3 138.0 0 7.74e01 1.98e02
100 2.98 2.74e5 2.77e3 45.9 0 2.28e01 6.68e01

50 2.89 1.01e5 2.07e3 23.0 0 1.23e01 3.41e01
10 0.02 6.21e3 6.89e2 4.7 0 1.50e00 6.79e00

PPSF Broyden 2000 54.50 6.18e7 3.09e4 525.0 93 1.25e07 2.21e07
1500 19.10 2.44e7 1.63e4 329.0 82 8.85e06 1.72e07
1000 8.41 1.16e7 1.16e4 199.0 32 6.25e06 1.10e07

800 5.59 7.99e6 1.00e4 164.0 8 5.05e06 8.75e06
500 2.48 3.32e6 6.66e3 109.0 0 2.62e06 5.73e06
300 1.32 1.58e6 5.29e3 70.9 0 1.75e06 3.35e06
100 0.57 2.96e5 2.99e3 26.5 0 5.27e05 1.36e06

50 0.62 1.26e5 2.56e3 14.0 0 2.39e05 6.85e05
10 0.06 1.60e4 1.78e3 3.1 0 1.05e04 1.95e05

that the number of objective function evaluations NS is moderate for all
problems and n. We can also see from Figures 1 and 3 that the number
NS seems a linear function of the number of variables for all problems for
which the algorithm was successful.

The ratio Ng/NS increases as the number of variables increases. Figures
2 and 4 demonstrate that this ratio is a linear function of the number of
variables and Ng/NS ≈αn where α=0.30–0.95.

192 A.M. BAGIROV AND J. UGON

Number of variables
0 500 1000 1500 2000

N
s

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1
2

3
4

5

6

8

9

Figure 1. Average number of function evaluations for piecewise chained functions.

Number of variables
0 500 1000 1500 2000

N
g/

N
s

0

200

400

600

800

1000

1200

1400

1600

1800 1

2

3

4

5

6

8

9

Figure 2. Average ratio of the number of function evaluations for general scheme to simplified
scheme for piecewise chained functions.

The numerical results show that the number of term function evaluations
is small in all cases, and therefore from a more practical viewpoint, almost
all problems were solved in less than one minute on a normal PC.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 193

Number of variables
0 500 1000 1500 2000

N
s

0

5000

10000

15000

20000

25000

30000

35000

10

11

12

13

Figure 3. Average number of function evaluations for PPS functions.

Number of variables
0 500 1000 1500 2000

N
g/

N
s

0

200

400

600

800

1000

10

11

12

13

Figure 4. Average ratio of the number of function evaluations for general scheme to simplified
scheme for PPS functions.

7. Conclusions

In this paper we have developed an algorithm for solving one class of large
scale nonsmooth optimization. This class contains piecewise partially sepa-
rable functions. These functions have many practical applications including
applications in data mining and information retrieval. An algorithm for
minimization of these functions is the modification of the discrete gradient

194 A.M. BAGIROV AND J. UGON

method. It has been shown that the calculation of discrete gradients can be
significantly accelerated. We present results of preliminary numerical experi-
ments which demonstrate that the proposed algorithm is efficient for solving
many large scale nonsmooth optimization problems up to 2000 variables.

As it was pointed out above in this paper the discrete gradient method
consists of three major steps: the computation of the discrete gradients,
the computation of a descent direction by solving a certain quadratic pro-
gramming problem and a line search. The simplified scheme proposed in
this paper allows one to significantly accelerate the computation of the dis-
crete gradients. However, the acceleration of the two other steps taking into
account the structure of problems may lead to more efficient algorithms to
solve a broad class of large scale nonsmooth optimization problems. This
will be the subject of our further research.

Acknowledgement

This research was supported by the Australian Research Council.

References

1. Aberick, B.M., Bicshof, C.H., Carle, A., More, J. and Griewank, A. (1994), Computing
large sparse Jacobian matrices using automatic differentiation, SIAM Journal on Scien-
tific and Statistical Computing 15, 285–294.

2. Bagirov, A.M. and Gasanov, A.A. (1995), A method of approximating a quasidiffer-
ential, Russian Journal of Computational Mathematics and Mathematical Physics 35(4),
403–409.

3. Bagirov, A.M. (1999), Minimization methods for one class of nonsmooth functions and
calculation of semi-equilibrium prices, In: Eberhard, A. et al. (eds.) Progress in Optimi-
zation: Contribution from Australasia, Kluwer Academic Publishers, pp. 147–175.

4. Bagirov, A.M. (2002), A method for minimzation of quasidifferentiable functions, Opti-
mization Methods and Software 17(1), 31–60.

5. Bagirov, A.M. (2003), Continuous subdifferential approximations and their applications,
Journal of Mathematical Sciences 115(5), 2567–2609.

6. Bagirov, A.M., Rubinov, A.M., Soukhoroukova, N.V. and Yearwood, J. (2003), Unsuper-
vised and supervised data classification via nonsmooth and global optimization, TOP:
Spanish Journal of Operations Research 1–93.

7. Bagirov, A.M. and Ugon, J. (2005), An algorithm for minimizing clustering functions,
Optimization 54(4–5), 351–368.

8. Bagirov, A.M. Max-min separability, Optmization Methods and Software 20(2–3), 271–
290.

9. Bagirov, A.M. and Yearwood, J. A new nonsmooth optimization algorithm for minimum
sum-of-squares clustering problems, European Journal of Operational Research 170(2),
578–596.

10. Bock, H.H. (1974), Automatische Klassifikation, Vandenhoeck & Ruprecht, Gottingen.
11. Clarke, F.H. (1983), Optimization and Nonsmooth Analysis, Wiley, New York.
12. Colson, B. and Toint, Ph.L. (2002), A derivative-free algorithm for sparse unconstrained

optimization problems, In: Siddiqi, A.H., and Kocvara, M. (eds.), Trends in Industrial
and Applied Mathematics, Kluwer Academic Publishers, Dordrecht, pp. 131–147.

PIECEWISE PARTIALLY SEPARABLE FUNCTIONS 195

13. Conn, A.R., Gould, N. and Toint, Ph.L. (1994), Improving the decomposition of par-
tially separable functions in the context of large-scale optimization: a first approach, In:
Hager, W.W., Hearn, D.W., and Pardalos, P.M. (eds.), Large Scale Optimization: State
of the Art, Kluwer Academic Publishers, Dordrecht, pp. 82–94.

14. Demyanov, V.F. and Rubinov, A.M. (1995), Constructive Nonsmooth Analysis, Peter
Lang, Frankfurt am Main.

15. Evtushenko, Yu.G. (1972), A numerical method for finding best guaranteed estimates,
USSR Journal of Computational Mathematics and Mathematical Physics 12, 109–128.

16. Griewank, A. and Toint, Ph.L. (1982), On the unconstrained optimization of partially
separable functions, In: Powell, M.J.D. (ed.), Nonlinear Optimization, Academic Press,
pp. 301–312.

17. Haarala, M., Miettinen, K. and Makela, M.M. (2004), New-limited memory bundle
method for large-scale nonsmooth optimization, Optimization Methods and Software
19(6), 673–692.

18. Hansen, P. and Jaumard, B. (1997), Cluster analysis and mathematical programming,
Mathematical Programming 79(1–3), 191–215.

19. Hiriart-Urruty, J.-P. and Lemarechal, C. (1993), Convex Analysis and Minimization Algo-
rithms, Vol. 1 and 2, Springer-Verlag, Berlin, New York.

20. Kiwiel, K.C. (1985), Methods of Descent for Nondifferentiable Optimization, Lecture
Notes in Mathematics, 1133, Springer-Verlag, Berlin.

21. Jain, A.K., Murty, M.N. and Flynn, P.J. (1999), Data clustering: a review, ACM Com-
puting Surveys 31(3), 264–323.

22. Luksan, L. and Vlcek, J. (1999), Sparse and partially separable test problems for uncon-
strained and equality constrained optimization, Technical Report 767, Institute of Com-
puter Science, Academy of Sciences of the Czech Republic, Prague.

23. Luksan, L. and Vlcek, J. (2000), Test problems for nonsmooth unconstrained and lin-
early constrained optimization, Technical Report 798, Institute of Computer Science,
Academy of Sciences of the Czech Republic, Prague.

24. Makela, M.M. and Neittaanmaki, P. (1992), Nonsmooth Optimization, World Scientific,
Singapore.

25. Mifflin, R. (1977), Semismooth and semiconvex functions in constrained optimization,
SIAM Journal on Control and Optimization 15(6), 959–972.

26. Nelder, J.A. and Mead, R. (1965), A simplex method for function minimization, Com-
puter Journal 7, 308–313.

27. Powell, M.J.D. (2002), UOBYQA: unconstrained optimization by quadratic approxima-
tion, Mathematical Programming Series B, 92(3), 555–582.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

